Linear and cyclic distance-three labellings of trees

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear and cyclic distance-three labellings of trees

Given a finite or infinite graph G and positive integers `, h1, h2, h3, an L(h1, h2, h3)labelling of G with span ` is a mapping f : V (G) → {0, 1, 2, . . . , `} such that, for i = 1, 2, 3 and any u, v ∈ V (G) at distance i in G, |f(u)−f(v)| ≥ hi. A C(h1, h2, h3)-labelling of G with span ` is defined similarly by requiring |f(u)− f(v)|` ≥ hi instead, where |x|` = min{|x|, `− |x|}. The minimum sp...

متن کامل

Connections between labellings of trees

There are many long-standing conjectures related with some labellings of trees. It is important to connect labellings that are related with conjectures. We find some connections between known labellings of simple graphs.

متن کامل

Relaxed Graceful Labellings of Trees

A graph G on m edges is considered graceful if there is a labelling f of the vertices of G with distinct integers in the set {0, 1, . . . ,m} such that the induced edge labelling g defined by g(uv) = |f(u) − f(v)| is a bijection to {1, . . . ,m}. We here consider some relaxations of these conditions as applied to tree labellings: 1. Edge-relaxed graceful labellings, in which repeated edge label...

متن کامل

Modular gracious labellings of trees

A gracious labelling g of a tree is a graceful labelling in which, treating the tree as a bipartite graph, the label of any edge (d,u) (d a ‘down’ and u an ‘up’ vertex) is g(u) – g(d). A gracious k-labelling is one such that each residue class modulo k has the ‘correct’ numbers of vertex and edge labels that is, the numbers that arise by interpreting the labels of a gracious labelling modulo k....

متن کامل

Distance three labelings of trees

An L(2, 1, 1)-labeling of a graph G assigns nonnegative integers to the vertices of G in such a way that labels of adjacent vertices differ by at least two, while vertices that are at distance at most three are assigned different labels. The maximum label used is called the span of the labeling, and the aim is to minimize this value. We show that the minimum span of an L(2, 1, 1)-labeling of a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2014

ISSN: 0166-218X

DOI: 10.1016/j.dam.2014.06.003